我们会发现很多网站都具备了内容推荐的功能,不仅是像B2C电子商务类的卓越的图书推荐,也包括兴趣类网站像豆瓣的豆瓣猜等。这类功能无疑在帮助用户发现需求,促进商品购买和服务应用方面起到了显著性的效果。那么这类的推荐是怎么得到的呢?其实跟网站数据分析不无相关,我们可以来简单看一下它的原理和实现。
关联推荐在营销上被分为两类:
向上营销(Up Marketing):根据既有客户过去的消费喜好,提供更高价值或者其他用以加强其原有功能或者用途的产品或服务。
交叉营销(Cross Marketing):从客户的购买行为中发现客户的多种需求,向其推销相关的产品或服务。
向上营销是基于同类产品线的升级或优化产品的推荐,而交叉营销是基于相似但不同类的产品的推荐。举个简单的例子,可以看一下苹果的产品线:
当你购买一个ipod nano3的时候,向你推荐升级产品nano4、nano5或者功能类似的itouch就叫做“向上营销”;而推荐Iphone、Mac或ipad的时候就是“交叉营销”了。
而关联推荐在实现方式上也可以分为两种:以产品分析为基础的关联推荐和以用户分析为基础的关联推荐。产品分析的关联推荐指的是通过分析产品的特征发现它们之间的共同点,比如《Web Analytics》和《Web Analytics 2.0》的作者都是Avinash Kaushik,而且书名都包含Web Analytics,都是网站分析类的书籍,同时也可能是同一个出版社……那么基于产品的关联就可以向购买了《Web Analytics》的用户推荐《Web Analytics 2.0》。而基于用户分析的推荐是通过分析用户的历史行为数据,可能会发现购买了《Web Analytics》的很多用户也买了《The Elements of User Experience》这本书,那么就可以基于这个发现进行推荐,这种方法就是数据挖掘中的关联规则(Association Rules)挖掘,其中最经典的案例就是沃尔玛的啤酒和尿布的故事。
目前很多的关联推荐还是基于产品层面的,因为实现上更为简单(对于网站而言,产品数据明显少于用户行为数据,而且可能相差好几个数量级,所以分析工作就会轻很多),基于产品的推荐更多地以上面所述的两种营销手段来实现,更偏向于传统的“推式”营销(个人对这种营销方式比较没有好感,尤其“捆绑销售”之类)。